

Welding 4.0 – Multi-process MIG/MAG welding machine

Titan XQ puls | Titan XQ puls compact

Allow us to introduce: Titan XQ puls Welding 4.0 – the future of welding

Conquer the new dimension welcome to the world of welding 4.0 by EWM.

The future of professional welding is networked, digital and paperless. These are the challenges of "Industry 4.0" and every company must face these sooner or later. The EWM group delivers welding companies the ideal solution with the new Titan XQ puls multiprocess MIG/ MAG welding machine and the Welding 4.0 welding management system ewm Xnet 2.0 first-class future-proofability, for even more efficient, qualitative-certifiable welding.

All innovative welding procedures and characteristics are included in the purchase price of the welding machine.

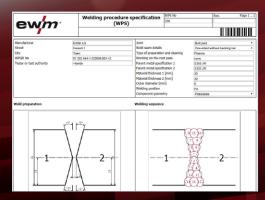
 Welding consistently at the highest levels of quality and efficiency, as all innovative welding processes from EWM are available as standard

allin

Display WPS and welding data via mobile device view tells you everything

itan

 Easy parameter control directly in the welder's workplace thanks to availability of all current welding data


Welding 4.0 – ewm Xnet 2.0 welding management system

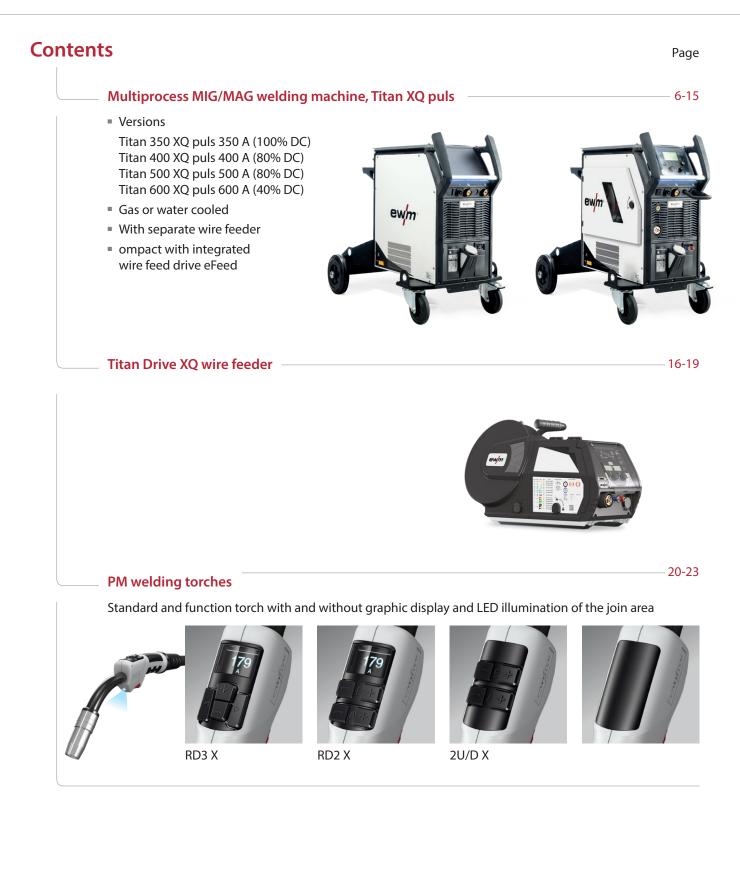
Create paperless WPS – assign WPS to component parts and welders

 Efficiently create WPS and conveniently assign from the office according to quality assurance

Component management for efficient manufacturing – step-by-step to perfection

 Minimised risk of welding defects thanks to convenient and componentbased allocation of WPS for each individual run/seam

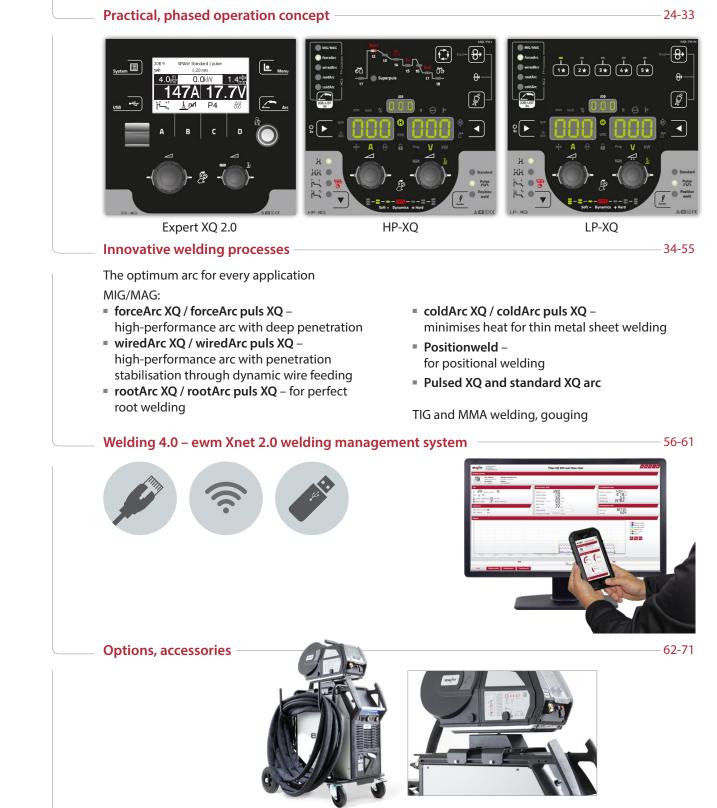
5:0


179

A

PM welding torch with graphic display – information directly on the workpiece

 Conveniently save time reading and acknowledging the current welding task according to the welding sequence plan via welding torch on the workpiece


System overview

Contents

Technical data

72-75

Titan XQ puls – A perfect series

Wishful thinking becomes reality

Maximum operating convenience, long service life and all pulse, standard and innovative welding processes optimised and included in the machine at no extra charge. The members of the Titan XQ family are taking a quantum leap in welding technology. Here, perfect weld seams are already pre-programmed for low- and highalloy steels and aluminium in all material thicknesses and all positions. Thanks to the many options and accessories for the Titan XQ puls series, you can put together your machine in the way that best suits you, your needs and your applications. An exceptionally long duty cycle of 100% at up to 350 A, for example, makes for effective working. Perfect welding becomes sustainable – 24 hours a day, 7 days a week.

Titan XQ puls compact

Titan XQ puls

Titan XQ puls double wire feeder

all in

All MIG/MAG processes included in the machine at no extra charge!

With the new RCC inverter technology, the welding features of the Titan XQ puls have been improved in all welding processes.

- rootArc XQ/rootArc puls XQ for perfect root welding
- coldArc XQ/coldArc puls XQ minimises heat for thin metal sheet welding
- forceArc XQ/forceArc puls XQ high-performance arc with deep penetration
- wiredArc XQ/wiredArc puls XQ high-performance arc with penetration stabilisation thanks to dynamic wire control
- Positionweld for positional welding
- Pulsed XQ and standard XQ arc
- TIG and MMA welding, gouging

Titan XQ puls compact – with integrated eFeed wire feeder

Consistently perfect results

The Titan XQ puls compact, with its 350 A and 400 A models is ideal for welding booths, trade and training. In conjunction with the optional miniDrive intermediate drive, the action radius can be expanded to up to 30 m. Using our welding torch models with control function, you can operate the Titan XQ puls compact quite

Control

- Users may select from three controls:
 - HP-XQ
 - LP-XQ
 - Expert XQ 2.0, also with LAN/Wi-Fi gateway
- More details from page 24

conveniently from your workplace. The integrated eFeed wire feeder increases operating convenience for every user and optimises results. Precise wire feeding has a positive effect on welding features and ensures optimal results.

LED status bar

 Indicates the current operating status in colour

Connection panel

 Easy manual switching of the polarity without tools

Euro torch connector

- Global standard
- Thanks to digital X technology Remote control of the function torch without a control cable

Torch cooling

- Can be gas cooled or water cooled
- High cooling capacity of 1,500 W, powerful centrifugal pump and 8-litre water tank

Wire feeding – precise and practical

- Four driven wire feed rolls
- Automatic wire inching saves time
- Simple, tool-free roll change
- Permanently secured roll fastener
- More details from page 17

Optional

Wire spool diameter

conditions are poor

 Thanks to interior lighting, changing wires and operating the machine is easy even where lighting

D200/300

WRS – wire reserve sensor

More details from page 17

Titan XQ puls – For even greater flexibility

Ideal for demanding jobs

If you are working on large components or in hard-toreach areas, the Titan XQ puls is the right welding machine for you. Its mobile wire feeder with integrated control gives you greater flexibility in application and range.

With their wide range of options and accessories for the Drive XQ wire feeder, the models for 350 A, 400 A, 500 A and 600 A (whether gas or water cooled) can be adapted to any special or exceptional requirements you may have.

This includes, for example, a wheel kit with large wheels, the heavy-duty set with a protective plate and stable crane suspension for even greater freedom of movement.

The flexFit casing system with numerous mounting options – organisation is half the welding

- Intermediate hose package holder, wire feeder cross arms you name it: a large number of individually-used accessories and options can be secured to the continuous-cast aluminium profile of the top cross member of the casing by means of handy slot nuts
- More detailed information from page 62

EWM intermediate hose packages – the highest standards of quality for a long service life

- Industrial-quality plug
- Highly flexible control and welding cables for handling high bending and torsional stress
- Fabric-sheathed hoses for handling high pressure and temperature loads
- Diffusion-proof gas hoses in accordance with EN 559
- Heavy-duty protective hose casings
- Strain relief on both ends
- Quick changing all connections are accessible from the outside

Can be individually configured exactly to your needs

Customised design: with or without gas cylinder holder for one or two cylinders, mains cable length up to 15 m, versions for two wire feeders and more.

Option of two wire feeders – change welding tasks with no set-up time

 Effortlessly change between two different wires and shielding gases, e.g. for welding solid and flux cored wires

Safe crane transportation – levitation made easy

 4 rugged mounts (40 mm dia.) for easy hook-in or through connection of the crane harness

Large wheels to overcome obstacles

- Generous 250 mm diameter means that the machine can be easily moved and effortlessly overcome obstacles such as cables or thresholds
- Large track widths ensure stability, even on inclinations of up to 15°

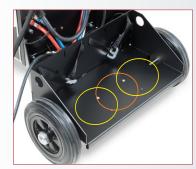
Guide castors – reach your target

- Above-average 160 mm diameter makes moving, steering and overcoming obstacles easy
- Features parking brake to prevent rolling away, even on slopes

Gas cylinder holder on top – for a secure hold

- For single or double cylinders (optional)
- Quick and easy securing of the shielding gas cylinder using straps with turnbuckles
- Secure strain relief for intermediate hose packages using holders

Strain relief for intermediate hose package


Gas cylinder holder for one shielding gas cylinder

Two shielding gas cylinders

Gas cylinder holder at the bottom – a good position

- For single or double cylinders as standard
- Easy placement of the shielding gas cylinder thanks to the low, flat loading edge of the cylinder cart

Torch cooling – large volume for great performance

- Excellent torch cooling reduces costs through lower consumption of torch consumables
- High cooling capacity of 1,500 W, high-performance centrifugal pump and 8-litre water tank
- More detailed information from page 14

An inverter power source that doesn't even dry up in the desert

Tough performer. Generous giver.

Providing a sustainable and power-saving welding current is the art of the electronic inverter. The new Titan inverter technology excels even in the toughest continuous operation and extreme environmental conditions. The reasons for this: above-average high duty cycle, high efficiency and the EWM proverbial longevity and robust workmanship. The generous dimensioning of all components is also responsible for these outstanding inner values. The cooling of the semiconductor, in particular, guarantees this innovative welding machine has an especially long service life.

High availability in production – a true workhorse

80% DC at 40 °C ambient temperature

Ready to use anywhere – Titan XQ doesn't know the word "no"

- Can be used under all climatic conditions, including heat, frost, rain, snow and dusty conditions
- Operating range –25 °C to +40° C
- Splash-proof safety class IP23
- Multi-voltage capability optionally works with 400 V, 415 V, 460 V, 480 V and 500 V mains voltage

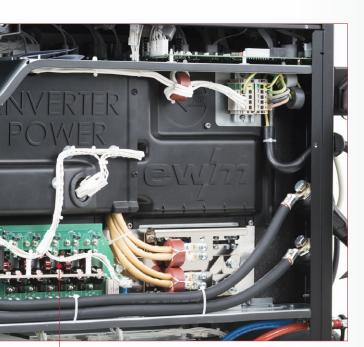
With unrivalled EWM quality warranty

- 3-year warranty for welding machines and 5-year warranty for transformers and rectifiers
- No restriction to the number of operating hours even when used in 3-shift operation 24 hours a day, 7 days a week

Fan control in the inverter - energy-saving

- Temperature and performance-controlled fan
- Low pollution and quiet fan noise

Easy servicing and maintenance


Easy accessible components in the power unit

- Switching off the welding current in the event of an error, in the presence of stray welding currents
- Protection of PE lines

Generous design of all components – high power reserves, high duty cycle 80% DC

- Long service life thanks to large heat sink for reduced heating of semiconductor components
- High machine availability thanks to large power reserves
- High-quality components arranged to protect against dust and dirt promise fail-safe operation

RCC power module (rapid current control) – high process stability

 Rapid, digital welding current control – even with long hose packages

Energy-cost-saving inverter technology

- Lower power consumption thanks to high efficiency and automatic power-saving mode (standby function)
- Electricity costs fall, so production costs do too

The major sustainability initiative from EWM

Refreshingly innovative – especially when things hot up Thanks to torch cooling

Always keep a cool welding torch

Particularly efficient welding torch water cooling for high-performance arcs guarantee cold torches and thus low follow-up costs for consumables and torch maintenance, even under difficult ambient conditions.

High cooling capacity of 1500 watts – saves money

- Reduces wear of consumables of the welding torch and prolongs its service life
- 8 litre water tank, sufficient coolant water reserves even for long hose packages
- Allows comfortable operation thanks to reliable cooling, even in continuous operation

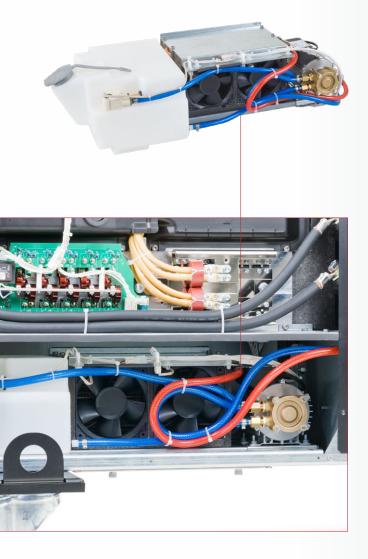
Customise exactly as you like

- Titan XQ is available in gas and water cooled versions
- Standard version with 3.5 bar pump
- Heavy duty 4.5 bar pump for using with long hose packages or with great height differences, e.g. in shipping and vehicle construction

Flow monitor as standard – insurance against failure

 Protects water-cooled welding torches from overheating and damage caused by low coolant flow

High performance


torch cooling

Fill level indicator – always up-to-date

Easy to read fill level indicator with MIN/MAX scale

Can also be retrofitted – if there is currently no demand

• The cooling unit has a modular design and can be retrofitted or replaced with only a few steps

Temperature-monitored coolant – always in the green range

 Protects the welding torch from overheating through hot coolant water

Easy servicing and maintenance

• Easy accessible components in the cooling unit

Temperature and speed-controlled cooling fan

 Reduced contamination of the cooling unit and less noise emissions, as fan only runs when needed

Always wired – with ease and precision Drive XQ wire feeder

Hard work can be made so easy

Whether on impassable scaffolding, difficult to access work positions or large components – the Drive XQ wire feeder is an agreeable companion. Only 13 kg (without wire spool) to carry with the ergonomically balanced handle – even through a manhole, if necessary. The high-precision wire feeding with four rolls guarantees constant welding results, saves aggravation and pays off. A long service life is assured, even when used in three-shift.

Wire spool cap - protective dust cap with inspection window

- Dust-proof wire spool cap
- Inspection window indicates level of wire spool
- Simple and convenient spool change
- Fully insulated wire space

Locking system – always reliable

 Cover cap stays closed even under the most demanding conditions

Equipment – sophisticated design

- Tool-free changing of intermediate hose packages
- No need for intervention in the electric area thanks to externally accessible connections
- Strain-relieved hose package with strap and swivel
- Protected hose package connections

Optional

DGC – electronic gas flow control saves you money

- Prevents welding errors caused by too much or too little gas
- Efficiency through gas savings thanks to accurate settings
- Precise, digitally adjustable gas quantity
- Suitable gas quantity for the respective welding task (JOB) optimally set at the factory
- Exact gas quantity depending on the shielding gas automatically without conversion for argon mixed gas, CO₂, helium
- No gas blast with turbulence when igniting the arc as electrical valve opens and closes gently
- Welding stop when dropping below the critical quantity of gas (shielding gas cylinder empty or gas supply interrupted)
- Simplified calculation by recording the exact gas consumption via the ewm Xnet 2.0 software (optional)

Wire feeding – precise and practical

- Four driven wire feed rolls
- Automatic wire inching saves time
- Simple, tool-free roll change
- Permanently secured roll fastener

Functions - useful in daily use

- Key switch control shut-off to prevent against operator error
- Changeover switch program or up/down mode

Interior lighting – for roll change

• Changing wires and operating the machine is easy even with poor lighting

Wire inching push-button

Automatic wire stop on contact

Gas test push-button

Connections – stable and protected

- Recessed Euro torch connector and water connections
- Impact protection through protruding plastic edge

flexFit casing system - robust and variable

- Solidly-designed base made from continuously cast aluminium
- Mounting options for sliding rails, rubber feet, wheel kit, etc.

WHS – wire spool heater, the new dry spell

ewm

- Prevents moisture accumulation on the welding wire through preheating
- Controlled temperature to 40 °C
- Reduced risk of hydrogen pores

WRS

WRS – wire reserve sensor, no surprises during welding

- Warns at 10% residual quantity of the wire spool by means of a control lamp
- Minimises the risk of weld defects as a result of the wire running out during the welding process
- Forward-looking production planning reduces nonproductive times and thus production costs as a new wire spool can be inserted in good time

Moving ahead – with precision and durability Wire feed mechanism eFeed

Moving ahead - with precision and durability.

Precise and slip-free movement thanks to ball bearings for the drive shafts and four individually driven rolls makes for an extremely stable welding process. Thanks to their robust design, the mechanics do their job even in tough continuous operation and difficult ambient conditions. Precise, robust wire feed mechanism guarantees optimum welding results and saves aggravation for the welder.

> Stainless steel, steel,

Flux cored

braze Aluminium

2,5

Wire feed mechanism eFeed with ball-bearings and four driven drive rolls - one more step forward

UNI rolls for two wire diameters - saves exchanging rolls

- Can be used directly with no additional costs, factory-fitted with UNI rolls for 1.0 mm and 1.2 mm steel and stainless steel
- UNI rolls are also available for 0.8 + 1.0 mm

Colour-coded rolls - prevents confusion

- Colour-coded rolls for various wire diameters
- Always the right equipment thanks to colour coding
- Can be read quickly and easily

with V-groove (blue/red) for

stainless steel, steel

e.g. UNI rolls for Ø 1.0 mm to 1.2 mm e.g. Ø 1 mm with U-groove (blue/yellow): for aluminium

e.g. Ø 1 mm with V-groove, knurled (blue/orange): for flux cored wire

eFeed wire feed mechanism - your benefits

 Robust, die cast aluminium housing for a long service life

Stainless

braze

steel, steel,

Aluminium

Flux cored

3-3,5

2-2.5

2,5-3

- Dual ball bearings (instead of friction bearings) on all four drive axles reduce roll tolerances for a longer service life and less abrasion
- Time is saved due to error-free fully-automated inching without time-consuming opening of the drive
- Tool-free roll change with captive roll fasteners
- Covered gearing protects against injury
- Large roll diameter (37 mm) for optimal transfer of power
- Four driven wire feed rolls

Individually adjustable contact pressure – as much as necessary

- The contact pressure for the front and rear roll pair can be set differently
- For aluminium, steel, stainless steel, braze, flux cored wire

Visible wire feeding – full control

• After wire spool change, allows visual monitoring during automatic inching

Exchange rolls in just three steps

Instantly, without tools and with captive parts

Unlock the roll fastener

Swivel out secured roll fastener

Exchange the roll

A joy to hold – ergonomics for welding Professional welding torch from the PM series

They hold the promise of EWM.

We all love something that fits well in the hand. The grips on the new PM welding torches are ergonomically optimised with rubber inserts so that they can be held comfortably and flexibly guided during welding. A particular advantage in difficult positions, making work easier. The balanced design of the grips, the reduced weight of the welding torch and the innovative, compact design of the hose package with anti-kink device also help reduce welder fatigue. It keeps the amount of force required to guide the welding torch to a minimum. The practical control keys and graphic display on the function torch also increase efficiency. They can be used to adjust many functions of the welding machine directly on the workpiece.

Compact ball joint – optimal range of movement in any position

- Comfortable working conditions thanks to strain relief, especially for positional welding
 Comfortable working conditions thanks to strain relief, especially for positional welding
 Comfortable working conditions thanks to strain relief, especially for positional welding
 Comfortable working conditions thanks to strain relief, especially for positional welding
 Comfortable working conditions thanks to strain relief, especially for positional welding
 Comfortable working conditions thanks to strain relief, especially for positional welding
 Comfortable working conditions thanks to strain relief, especially for positional welding
 High level of safety no switch on caused by unintentional operation
 - Protects against damage to the workpiece
- Secure grip for optimum welding torch guidance, even during positional welding

Your benefits

Reduce manufacturing costs – quality pays off

- Verifiably lower consumption of consumables of contact tip and gas nozzle
- Minimised finishing work thanks to significantly less spatter due to precise gas flow
- Less consumption of shielding gas by avoiding gas loss

Long services life of the EWM contact tips – size matters

 No overheating – optimum heat transfer thanks to the 30% larger material cross-section and conical fit of the contact tip in the M7/M9 compared to conventional M6/M8 thread sizes

Four operating variants – guarantees a good choice

One standard torch and three function torches are available for Titan XQ (details on the following pages)

X technology – replaces additional control cable assembly

 Fatigue-free work thanks to lighter torch hose package as there is no extra weight from a separate control cable assembly

Integrated LED lighting – even illuminates dark corners

- Makes welding in corners and dark areas of the working area easier
- LED lighting switches on independently of the torch trigger when the welding torch is moved (no operator error)

Improved welding quality - better than good

- Errors are minimised thanks to interference-free wire guiding 40% larger bend radius of the torch neck (from PM 301)
- Best heat dissipation in the torch body and therefore minimal warming of the consumables
- Outstanding shielding gas coverage of the arc range
- Secure contact through screw-retained contact tip and gas nozzle

Versions

- PM series standard torches · PM221/301/401G, · PM301/451/551W
- PM S series Short neck
- PM L series Long neck
- · PM451/551WS
- PM451/551WL

A joy to hold – ergonomics for welding Professional welding torch from the PM series

Four operating variants – guarantees a good choice.

One standard torch and three function torches are available for Titan XQ. They differ in their operating concept and their display options. But they all have one thing in common: ergonomic perfection and robust EWM quality. It's your choice.

PM RD3X

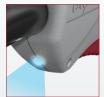
Function torch with graphic display and LED light

Setting options:

- Welding current and wire speed
- Welding voltage correction
- Welding procedure
- Welding program and tasks (JOBs)
- Operating mode non-latched/latched
- Component management: Selection of weld seams according to welding sequence plan

Display:

- All adjustable welding parameters and functions
- Status error and warning messages


PM RD2X

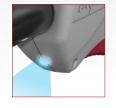
Function torch with graphic display and LED light

Setting options:

- Welding current and wire speed
- Welding voltage correction or
- Welding programs

Display:

- All adjustable welding parameters
- Status error and warning messages


PM 2U/DX

Function torch with LED light

Setting options:

- Welding current and wire speed
- Welding voltage correction or
- Welding programs

PM standard torch

Standard torch trigger for all MIG/MAG machines

Option torch trigger top

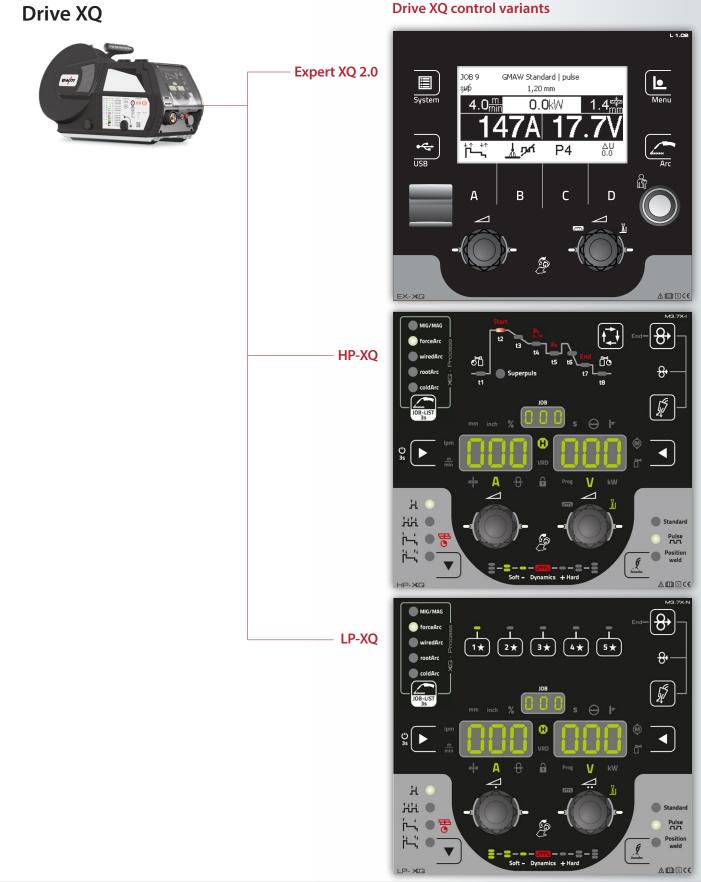
Practical, phased operation concept

Titan XQ puls

- Control variants and networking options:

- Expert XQ 2.0
- Expert XQ 2.0 LG with integrated LAN gateway

 Expert XQ 2.0 WLG with integrated LAN/WiFi



No control in the power source

Drive XQ control variants

For those who want more – everything Expert control with intuitive operation

The Expert XQ 2.0 control shows what the machine offers. The user only needs to make a selection using the click wheel – welding procedure, material, gas, wire diameter. The appropriate characteristic for the welding task (JOB) is immediately shown on the robust and easy-to-read LCD display and it's ready to go. For more fun in more efficient work.

LCD display – everything at a glance

- Plain text display for welding parameters and functions
- Easy to read through a welding helmet
- Good contrast even with reflected light thanks to anti-reflective surface

Display screen – tough performer

- Scratch-proof protective screen for the display made of acrylic glass with hard coating
- Always clearly legible no signs of wear, unlike touchscreens, for example
- 3 mm thick acrylic glass protective screen protects the LCD display against damage

Control – logical because needs-oriented

- Membrane keyboard is clear, intuitive and resistant against dust, dirt and moisture
- Quicker changing between the levels thanks to needs-oriented operation

Process change

- Quick switching between welding procedures:
 - · forceArc XQ / forceArc puls XQ
 - · wiredArc XQ / wiredArc puls XQ
- · rootArc XQ / rootArc puls XQ
- · coldArc XQ / coldArc puls XQ
- Positionweld
- · Pulsed XQ and standard XQ arcs

Xbutton – the key for welding

 Individual access privileges and menu customisation

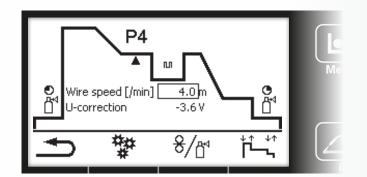
USB connection for new tasks

- Offline documentation of welding data
- Update of characteristics
- Software update

Click wheel operation – turn, press, finished

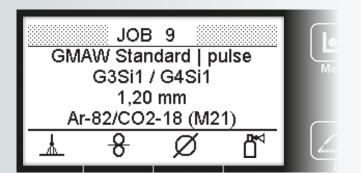
 Direct access to all important welding parameters through intuitive operating concept with click wheel functionality

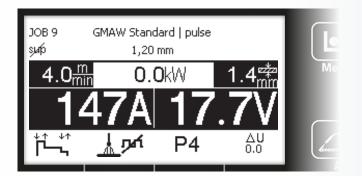
Optional display of values in national or international units (mm/inch)


Language selection – more languages than some professors

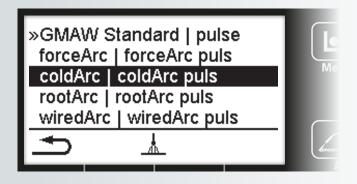
AMISCO

 Pre-configured languages for the user menu: German, English, French, Italian, Dutch, Polish, Danish, Latvian, Russian, Spanish, Czech, Swedish, Portuguese, Turkish, Hungarian, Romanian




Welding program sequence – lots of steps at a glance

• Simple adjustment of all welding parameters in the program sequence, such as starting current, end-crater current, for example


JOB window – which welding task should it be?

- Simple JOB selection of the characteristics via click wheel
 - · Welding procedure
 - · Material type
 - Gas type
- · Wire diameter

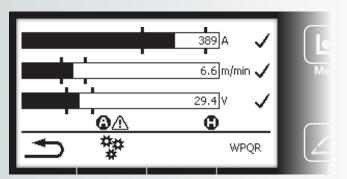
Welding parameter – everything has its value

- Displays the effective arc power for a simple calculation of energy per unit length
- Nominal, actual and hold values
- Operating modes
- Status messages

Quick switching between MIG/MAG welding procedure – the optimum for each welding task

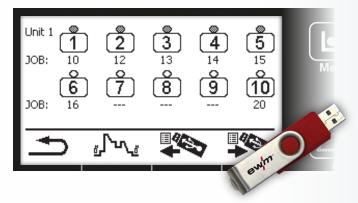
- forceArc XQ / forceArc puls XQ high-performance arc with deep penetration
- wiredArc XQ / wiredArc puls XQ high-performance arc with penetration stabilisation through dynamic wire feeding
- rootArc XQ / rootArc puls XQ for perfect root welding
- coldArc XQ / coldArc puls XQ minimises heat for thin metal sheet welding
- Positionweld for positional welding
- Pulsed XQ and standard XQ arc

WPQR welding data assistant						
Ø	392 A 1	28. 1.0 kW	0 V) m/min 5 min	
⊙ Weld length ∠ ○ Welding speed Thermal efficiency) cm) cm/min 5 %	
+	D t	8/5	E Q)は/mm 3は/mm	luu


WPQR welding data assistant – everything has its value

 The WPQR welding data assistant makes an exact calculation of the heat input and energy per unit length quick and easy

Heat input (Q)	(0.96 kJ/mm	
Preheating temperature (TO) 150°⊂		
Plate thickness (d)	20.0 mm		Me
	2D	3D	
Weld factor	1.00 F2	1.00 F3	
Transitional thickness	16.1 mm		
Cooling time t8/5	4.9 s	7.5 s	
Ð			Lun


Calculation T8/5-time

• From the previously calculated heat input Q, the T8/5 cooling time is directly calculated taking the specified material thickness and seam factors into account

Welding monitoring – gives protection and information

- Permitted working area
- Welding voltage
- Welding current
- Wire feed speed
- Predefined parameters via WPS

Favourite list with up to ten JOBs – creates routine

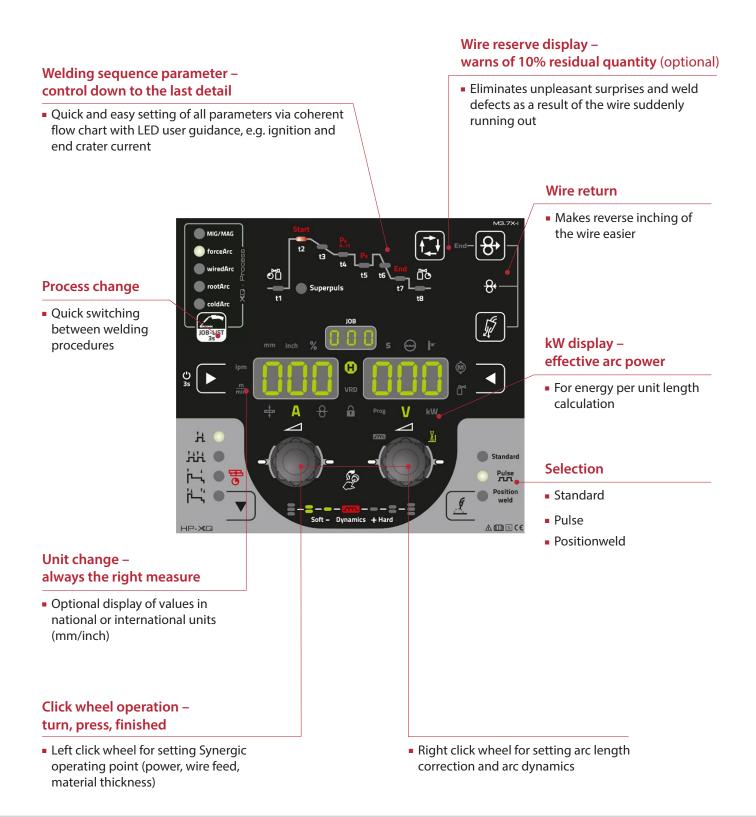
- Increases efficiency and prevents incorrect operations
- Create and retrieve JOBs individually
- Direct, simplified selection of the welding process to be used (JOBs)
- Transfer to other welding machines via XQ remote control or directly to Expert XQ 2.0

Easy data exchange using USB flash memoryincluding dreams of the future

- Always state-of-the-art welding technology: EWM's Titan XQ puls technology makes it possible to update the control as soon as new developments or welding tasks come out - simply by means of a USB stick
- EWM develops welding processes, material characteristics, power source characteristics, networking and individual operation on a continuous basis. Even existing EWM devices benefit from this through the simple data exchange
- Simple data transfer to LP-XQ and HP-XQ controls also possible with the Expert XQ 2.0 remote control

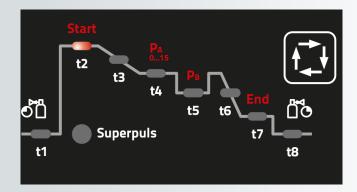
Access rights via Xbutton – individual user rights

- Identification of the welder
- Xbutton allows mapping of the welder to the welding machine
- Administration of access rights for different control operating levels and welding parameters
- Precise final costing possible thanks to the ewm Xnet 2.0 Welding 4.0 welding management system with individual data recording for each machine, application and welder
- Extremely robust and considerably more durable than RFID chip cards, for example

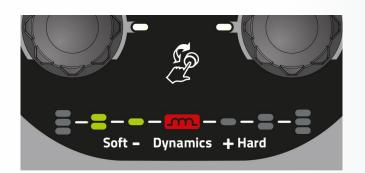

Quick data transfer for Industry 4.0

- Networking of any number of power sources via LAN/WiFi
- Simple offline data transfer via USB port

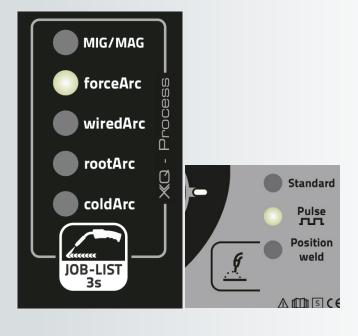
For perfectionists – individual setting options for any wel HP-XQ control – maximum variability down to the finest


The HP-XQ control offers the highest level of requirement-specific setting options for the relevant welding task. The user can individually determine every detail of the welding sequence from the ignition current to the end crater program. It is the ideal control for professional users who leave nothing to chance for perfect results.

30



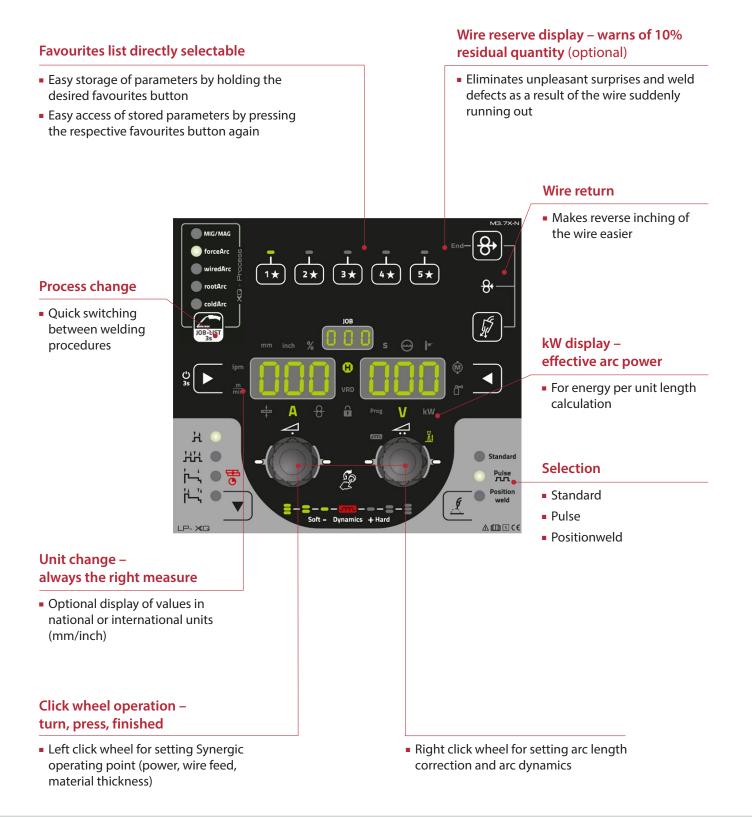
ding task detail


Welding sequence parameter – control down to the last detail

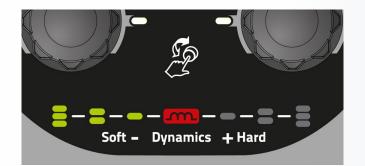
- Quick and easy setting of all parameters via coherent flow chart with LED user guidance
- Always appropriate welding power with adjustable start program and welding program (16 programs per JOB)
- Impeccable welding results thanks to
 Reduced welding program for heat control during the welding
 - End crater program with specific slope time to prevent end crater cracks
- Gas pre- and post-flow time can be set at the beginning and end to counter seam errors

Arc dynamics – from soft to hard

- Allows excellent welding results by precise dosage of the arc from "soft" (wide seam, low penetration) to "hard" (hard arc, deeper penetration)
- Displays the selected dynamic level via LED bar

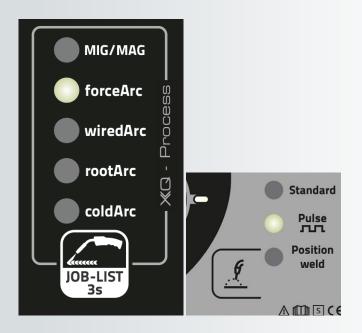

Quick switching between the MIG/MAG welding procedures – the right one for any welding task

- forceArc XQ / forceArc puls XQ high-performance arc with deep penetration
- wiredArc XQ / wiredArc puls XQ high-performance arc with penetration stabilisation through dynamic wire feeding
- rootArc XQ / rootArc puls XQ for perfect root welding
- coldArc XQ / coldArc puls XQ minimises heat for thin metal sheet welding
- Positionweld for positional welding
- Pulsed XQ and standard XQ arc


Intelligent simplicity – switch on and start welding LP-XQ control – self-explanatory operation

The LP-XQ control has set the best parameter for the required welding process from the ignition current to the end crater program ex works. This saves training time. The welder can start his work straightaway – simply set

the operating point via the click-wheel and off he goes. The control is recommended when changing welding personnel, e.g. on assembly jobs and construction sites.



Arc dynamics – from soft to hard

- Allows excellent welding results by precise dosage of the arc from "soft" (wide seam, low penetration) to "hard" (hard arc, deeper penetration)
- Displays the selected dynamic level via LED bar

Quick switching between the MIG/MAG welding procedures – the right one for any welding task

- forceArc XQ / forceArc puls XQ high-performance arc with deep penetration
- wiredArc XQ / wiredArc puls XQ high-performance arc with penetration stabilisation through dynamic wire feeding
- rootArc XQ / rootArc puls XQ for perfect root welding
- coldArc XQ / coldArc puls XQ minimises heat for thin metal sheet welding
- Positionweld for positional welding
- Pulsed XQ and standard XQ arc

Expert XQ 2.0 remote control – if more functions are needed

- Permits the use of all additional functions of the Expert XQ 2.0, if needed
- For all Expert XQ 2.0, LP-XQ and HP-XQ controls

Welding procedures – overview

	Root welding	• rootArc® XQ
	Welding filler passes and cover passes	■ forceArc puls® XC
	Welding fillet welds with deep penetration	forceArc puls® XC
	Welding using 100% CO ₂	■ coldArc® XQ/ rootArc® XQ
Welding	non-alloy, low-alloy and high-alloy steel	
	Welding full penetration fillet welds	■ forceArc puls [®] XC
	Positional welding without using the "Christmas tree" technique	Positionweld
	Welding with consistent penetration	
	and consistent power	wileuAic puis AQ
-	and brazing of non-alloy, low-alloy and h anised sheet metal	
-	and brazing of non-alloy, low-alloy and h	igh-alloy steel
and galv	and brazing of non-alloy, low-alloy and h anised sheet metal	
and galv	and brazing of non-alloy, low-alloy and h anised sheet metal Welding and brazing thin sheet metal	igh-alloy steel • coldArc® XQ / coldArc® puls XQ
and galv	and brazing of non-alloy, low-alloy and h anised sheet metal Welding and brazing thin sheet metal of high-alloy steel	igh-alloy steel • coldArc® XQ / coldArc® puls XQ
and galv	and brazing of non-alloy, low-alloy and h anised sheet metal Welding and brazing thin sheet metal of high-alloy steel Welding filler passes and cover passes	igh-alloy steel coldArc® XQ / coldArc® puls XQ forceArc puls® XQ
and galv	and brazing of non-alloy, low-alloy and h anised sheet metal Welding and brazing thin sheet metal of high-alloy steel Welding filler passes and cover passes of aluminium and aluminium alloys Welding of aluminium	igh-alloy steel coldArc® XQ / coldArc® puls XQ forceArc puls® XC Pulsed arc XQ

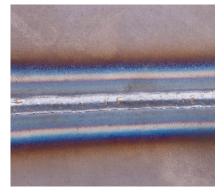
Root welding of non-alloy and low-alloy steel

Your requirements	Our solution – rootArc® XQ		
Inconsistent, changing air gap	 Perfect gap bridging 		
X-ray proof results	 Good root formation and secure sidewall fusion 		
Welding in various positions	 High arc force for root welding in all positions 		
Increased productivity	 Good welding speed and melt rate compared to TIG or MMA welding Low-spatter process 		
	 Rapid digital control of the process, easy to guide and to control Uses standard welding torches without additional wire movement 		
Straightforward handling	 Welding even with long hose packages without additional voltage measuring leads thanks to RCC power module (Rapid Current Control) 		
No grinding of intermediate passes	 For manual and mechanised applications Flat, smooth weld surface and virtually spatter-free process for reduced finishing work 		
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes 		

All Root welding in PC position with an air gap and without weld pool backing

Weld preparation of root welds on pipes, 60 ° included angle with 3 mm air gap

Front view



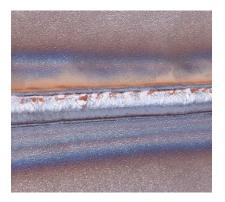
rootArc[®] XQ

3

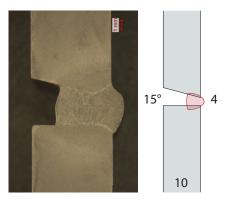
5

PC Root welding in PC position with an air gap and without weld pool backing

Root


Material thickness 5 mm Air gap 3 mm

Front view


PC Root welding in PC position with an air gap and without weld pool backing

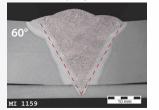
Front view

Root

Material thickness 10 mm, one-sided bevel 15 degrees, air gap 4 mm

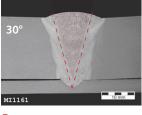
4 1.23 mm 60° 15 Pipe welding, wall thickness

15 mm, included angle 60 °


Root

Welding of filler passes and cover passes in non-alloy and low-alloy steel

Your requirements	Our solution – forceArc puls® XQ
Straightforward handling	 Easy to learn, even for inexperienced welders, thanks to rapid digital control of the process, virtually spatter free, reduced undercuts
Secure penetration	 Deep penetration for excellent root and sidewall fusion
Minimised distortion of the components	 Modified, heat-reduced, directionally stable pulsed arc
Improved economy	 Enables weld seam volumes to be reduced, potential for over 50% reduction of welding times in production, manual and automated
Reliable welding in poorly accessible areas	Perfect welding even with very long stick-outs
Changeable, inconsistent air gap	 Excellent gap bridging even in high power ranges
Undercuts, seam appearance	 Excellent wetting of the material surface, smooth weld surface even on heavily oxidised or dirty sheet metal
Welding procedure qualification	 Qualified by welding procedure test (process no. 135) in accordance with DIN EN ISO 15614-1
Straightforward handling	 EWM allin – one machine for welding all material thicknesses and using all processes


Welding with reduced seam volumes has been tested and confirmed multiple times by independent institutes. EWM's forceArc[®] XQ and forceArc puls[®] XQ welding processes allow welding times to be reduced by up to 50% compared to standard spray arc processes. The reduced included angle saves resources without changing the mechanical and technological properties.

Standard spray arc

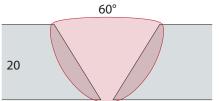
11 runs

forceArc[®] XO

5 runs 50% shorter welding time

Unchanged mechanical/technological properties

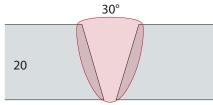
A complete technical report documenting all the advantages can be found online at the following link:


www.ewm-group.com/sl/professionalreport

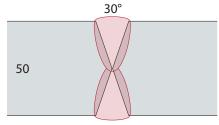
forceArc puls® XQ



S355, 20 mm, included angle 60 ° 8 runs, standard spray arc


PB Full penetration, T-joint welded on both sides

S235, 30 mm, included angle 35 $^\circ$ 8 runs



S355, 20 mm, included angle 30 ° 4 runs, forceArc puls®

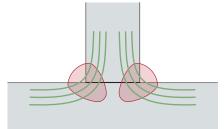
PA Full penetration, butt joint welded on both sides

S355, 50 mm, included angle 30 $^\circ$ 15 runs

Welding fillet welds with deep penetration on non-alloy and low-alloy steel

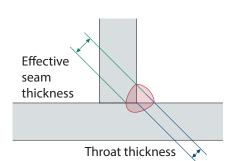
Your requirements	Our solution – forceArc puls® XQ
Improved economy	 Reduced number of welding passes for fillet welds
Secure penetration	 Deep penetration for excellent root and sidewall fusion
Minimised distortion of the components	 Modified, heat-reduced, directionally stable spray arc
Reliable welding in poorly accessible areas	 Perfect welding in narrow joints, even with very long stick-outs Rapid correction of alterations to stick-out lengths, reliable processing of stick-out lengths up to 40 mm
Reduced voltage in the fillet weld area	 Forces transferred to the interior of the component by deep penetration, seam volume reduced by large effective seam thickness in line with DIN EN ISO 17659:2005- 09, reduced heat input into the component
Welding procedure qualification	 Qualified by welding procedure test (process no. 135), in line with DIN EN ISO 15614-1
Simple, safe handling	 Rapid digital control of the process, easy to learn and directly applicable regardless of torch angle
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes

Reduced welding fume emissions

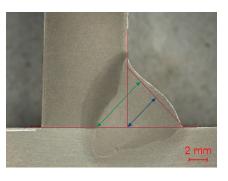

forceArc puls® XQ

Welding with deep penetration as per DIN EN 1090

Use the full potential of your weld seam. By taking the effective seam thickness of fillet welds into account, the forceArc puls[®] process enables single-pass welds up to throat = 8 mm to be created as opposed to throat = 5 mm in processes without deep penetration.

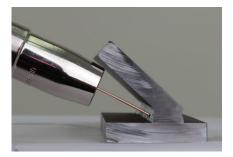


Flow of force in standard fillet welds

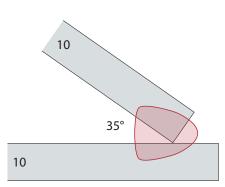


Improved flow of force thanks to deep penetration

Additional information



Definition of effective seam thickness as per DIN EN ISO 17659;2005-09


S355, 10 mm, effective seam thickness of 8 mm as per DIN EN ISO 17659:2005-09

All Welding with deep penetration and long stick-out

Web plate material thickness 10 mm, included angle 35 °

Welding with consistent penetration and consistent power on non-alloy, low-alloy and high-alloy steel

wiredArc XQ / wiredArc puls XQ

Your requirements	Our solution – wiredArc XQ/wiredArc puls XQ
Secure penetration, root and sidewall fusion	 Welding process with consistently high penetration depth regardless of alterations to the stick-out
Reduced or no weld spatter	 Virtually spatter-free welding results thanks to rapid digital control of the welding process
Controlled boot innet	 Digital process control supplies a consistent welding current
Controlled heat input	 The energy per unit length and heat input remain virtually consistent despite changes to the stick-out
Increased productivity	 Ability to reduce the seam's included angle and therefore the weld seam volume
Visually pleasing weld surface	 Flat, even weld surface and virtually spatter-free process for reduced finishing work
Straightforward handling	 Easy to learn and to control
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes

12 mm stick-out

10.01 mm

30 mm stick-out

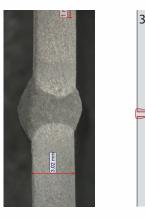
Standard

Alteration of the stick-out causes the penetration depth to change in standard welding processes. In particular, welding with an increasing stick-out length can cause the weld root to be insufficiently fused (lack of fusion).

wiredArc XQ

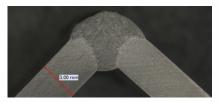
With EWM wiredArc XQ, the penetration remains consistent when the stick-out is altered. The innovative control keeps the welding current and the heat input virtually consistent.

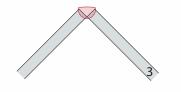
100% CO,

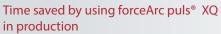

Welding using 100% CO₂ on non-alloy and low-alloy steel

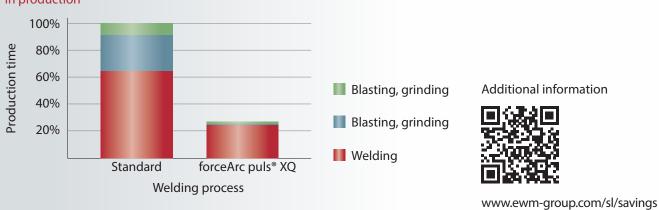
	2
Your requirements	Our solution – coldArc®XQ/rootArc® XQ/Standard
Minimised spatter similar to mixed gas	 Digital process control for low-spatter droplet transfer thanks to the RCC power module (Rapid Current Control)
Process stability	 Rapid process control thanks to the use of the latest microelectronics
Increased productivity	 Minimised weld spatter similar to mixed gas Welding even with long hose packages without additional voltage measuring leads thanks to RCC power module (Rapid Current Control)
Straightforward handling	Easy to guide and control
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes

PC Root welding in PC position with an air gap and without weld pool backing


S355, material thickness 3 mm, using G3Si1 1.2 mm diameter at 100% CO₂

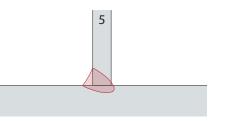

PA Root welding in PC position with an air gap and without weld pool backing


S355, material thickness 3 mm, using G3Si1 1.2 mm diameter at 100% CO₂

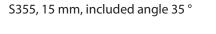


Welding full penetration fillet welds on non-alloy, low-alloy and high-alloy steel

Your requirements	Our solution – forceArc puls® XQ
Simple, safe handling	 Good gap bridging even in high power ranges, easy to learn and directly applicable Considerably reduced welding fume emissions compared to pulsed arc welding
Improved economy	 Secure full penetration even without an air gap, therefore good for fitting work Enables included angles to be reduced thereby reducing weld seam volumes, lowering the number of runs and significantly lowering costs
No gouging or grinding of the transverse root side	 Double-sided full penetration welds on butt joints or T-joints without grinding or gouging the transverse root side
Secure penetration	 Deep penetration for excellent root and sidewall fusion
Stable arc	 Good process stability when welding on the weld pool even at small included angles
Reliable welding in poorly accessible areas	 Perfect welding, even with very long stick-outs Even in tight and narrow gaps with very long stick-outs Rapid correction of alterations to stick-out lengths, reliable processing of stick-out lengths up to 40 mm
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes

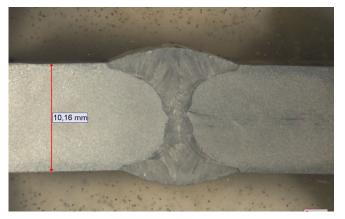


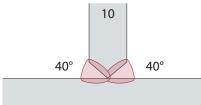
forceArc puls® XQ

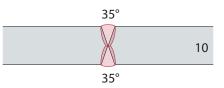


15 35° 35°

S355, 5 mm on 10 mm


PB Full penetration, welded on both sides

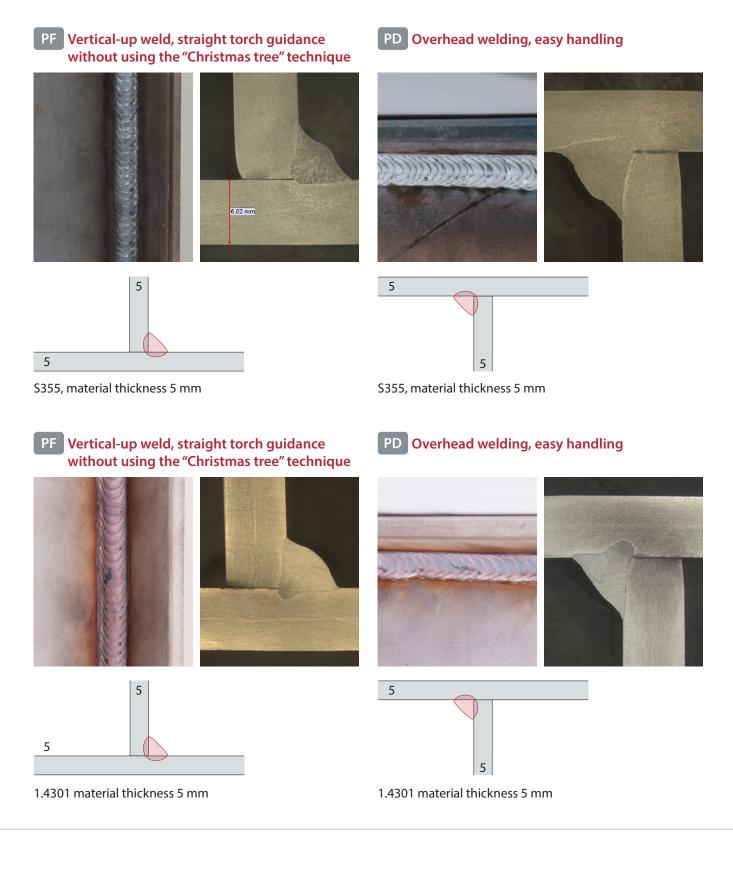



PA Full penetration, welded on both sides

PB Full penetration, welded on both sides

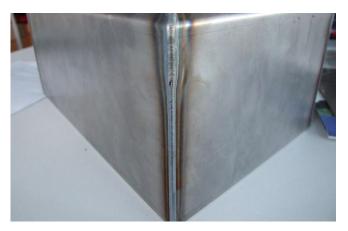
1.4301, 10 mm, included angle 40 $^\circ$

1.4301, 10 mm, double-sided full penetration on a butt joint with an included angle of 35 $^\circ$

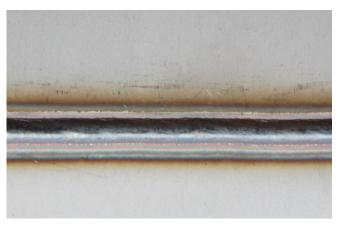

Positional welding without using the "Christmas tree" technique on non-alloy, low-alloy and high-alloy steel

Your requirements	Our solution – Positionweld
Increased productivity	 High welding speeds compared to the traditional "Christmas tree" technique
Secure penetration, root and sidewall fusion	 Concentrated, digitally modified pulsed arc
Reduced or no weld spatter	 Virtually spatter-free welding results thanks to rapid digital control of the welding process
Controlled heat input	 Optimum, factory-configured switching between low and high welding power Heat-reduced process with low arc power and energy per unit length
Visually pleasing weld surface	 Flat, evenly spaced bead ripples and virtually spatter-free process for reduced finishing work
Straightforward handling	 Easy to set and easy to guide
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes

Positionweld


Welding and brazing of thin sheet metal made from nonalloy, low-alloy, high-alloy steel and galvanised sheet metal

Your requirements	Our solution – coldArc®XQ/coldArc® puls XQ
Less distortion, minimal discolouration	 Lower heat input due to digital control of droplet transfer in short-circuit welding thanks to RCC power module (Rapid Current Control)
Visually pleasing, smooth weld surface, less or no weld spatter	 Flat, smooth weld surface and virtually spatter-free process, less discolouration and distortion reduces finishing work, excellent wetting of surfaces when brazing
Changeable, inconsistent air gap	No sagging of the molten metal, secure sidewall fusion even with misaligned edges
Secure penetration	 Optimum process performance configuration, steady and stable welding process
	 Rapid digital control of the process, easy to guide and control
Straightforward handling	 Welding even with long hose packages without additional voltage measuring leads thanks to RCC power module
Welding and brazing of coated (galvanised) sheet metal	 Minimal spatter formation, minimal impact on corrosion resistance
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes



coldArc[®] XQ / coldArc[®] puls XQ

Welding unalloyed sheet metal

Welding high-alloy sheet metal

Welding galvanised sheet metal

Brazing galvanised sheet metal

Brazing high tensile sheet metal, e.g. Usibor®

Brazing high-alloy (CrNi) sheet metal

Filler pass and cover pass welding of high-alloy steel

Your requirements	——————————————————————————————————————
Secure deep penetration	 Concentrated, digitally modified pulsed arc
Reduced or no weld spatter	 Virtually spatter-free welding results thanks to rapid digital control of the welding process Lower welding fume emissions compared to pulse arc welding
Minimal distortion	 Heat-reduced process with low arc power and energy per unit length reduced by up to 20% compared to pulsed arc
	 Ability to reduce the seam volume thanks to the smaller included angle in multipass welding
Increased productivity	 Symmetrical fillet welds with maximum attainable seam thickness (throat thickness)
	 Low interpass temperature/reduced non-productive time
Visually pleasing, smooth weld surface	 Flat, smooth weld surface and virtually spatter-free process for reduced finishing work, minimal discolouration
	 Rapid digital control of the process, easy to guide and control
Straightforward handling	 Consistent weld surface from various torch positions
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes

Your benefits

Up to 30% total cost savings

- Reduced costs for wages, welding consumables, shielding gas and power
- Reduced production time

Up to 15% lower heat input

- Less finishing work (straightening, sanding, cleaning) due to reduced distortion, discolouration and stress
- Minimised non-productive time due to shorter waiting times in multipass welding

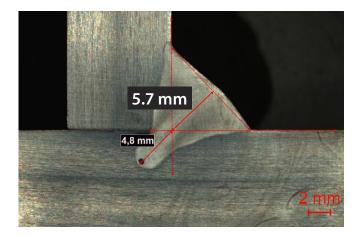
Up to 20% greater throat thickness**

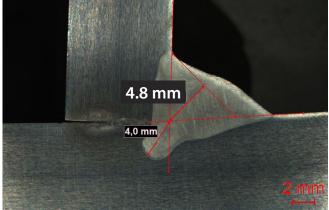
• Symmetrical seams due to deep, concentrated penetration with reliable root fusion

Virtually spatter free

Minimised finishing work, even on panels with scaling or very dirty surfaces

forceArc puls® XQ


Front view: Lower heat input using forceArc puls[®] XQ, less surface oxidation resulting in a better finish



Back view: Low heat input using forceArc puls[®] XQ, less surface oxidation

Compared to pulsed arc welding, forceArc puls[®] XQ inputs up to 15% less heat in the upper power ranges. This results in less discolouration and less distortion in the component. Your benefits

- Lower heat input
- Minimised energy per unit length
- Reduces distortion, discolouration and stress in the workpiece
- Less finishing work (straightening, sanding, cleaning)
- Less melting loss of alloy elements resulting in greater corrosion resistance

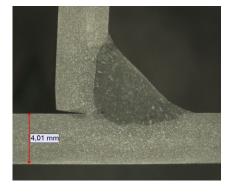
Process	forceArc puls® XQ	Pulse
Wire feed in m/min	13	13
Energy per unit length in kJ/mm	1.21 (-15%)	1.44
Weld speed in m/min	0.45	0.45
Throat thickness	5.7 (+15%)	4.8

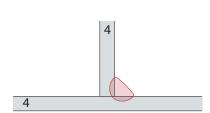
For welding aluminium and aluminium alloys

Pulsed arc XQ

Your requirements	Our solution – pulsed arc XQ
Secure penetration, root and sidewall fusion	 Rapid and stable process control thanks to the use of the latest microprocessor technology
Visually pleasing weld surface	 Steady, stable droplet transfer, less smoke residue on surface Individual weld appearance thanks to freely adjustable superPuls function
Minimised spatter	 Wire feed reverse for spatter-free ignition
For welding any material thickness	Reliable process starting from 1 mm
Straightforward handling	 Rapid digital control of the process, easy to guide and control
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes

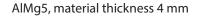
PC Welding on both sides of aluminium in shipbuilding

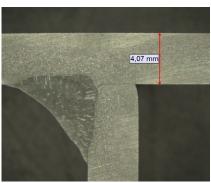

Welding of aluminium and aluminium alloys in positional welding without using the "Christmas tree" technique

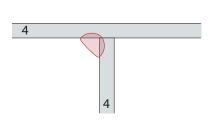

Positionweld

Your requirements	Our solution – Positionweld	
Secure penetration, root and sidewall fusion	 Concentrated, digitally controlled pulsed arc 	
Controlled heat input	 Optimum, factory configured switching between low and high welding power 	
Increased productivity	 High welding speeds compared to the traditional weaving techniques 	
Visually pleasing weld surface	 Flat, evenly spaced bead ripples and virtually spatter-free process for reduced finishing work 	
Straightforward handling	 Rapid digital control of the process, easy to guide and to control 	
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes 	

PF Vertical-up welding, easy handling



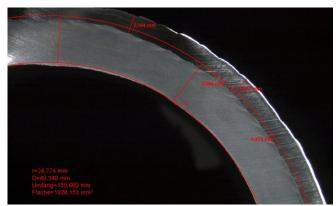




AlMg5, material thickness 4 mm

Surfacing, cladding/hardfacing

Your requirements	Our solution – cladding/hardfacing
Deposit with good corrosion resistance	 Low dilution due to optimum process configuration for surfacing
Little material removal after welding	 Even deposit structure, minimal machining work
Stable arc	 High process stability thanks to digitally controlled arc, minimised spatter formation
Straightforward handling	Easy to operate and set
Flexibility in production	 EWM allin – one machine for welding all material thicknesses and using all processes
	 Surfacing processes at no extra cost for Co-based and Ni-based alloys and high-alloy CrNi alloys



Cladding/hardfacing

PA Surfacing of finned tube walls

Corrosion-resistant surfacing of Alloy 625 Ni-based materials

PA MAG + hot wire surfacing for increased deposition rate

New process variant combines a MAG welding process supplemented with an additional hot wire.

- Up to 13.8 kg deposition rate for significantly increased productivity
- Minimal dilution
- Further improved properties of deposited layers
- Process easy to set up and configure
- Suitable for cladding and hardfacing

Additional information

www.ewm-group.com/sl/cladding

Welding 4.0 – ewm Xnet 2.0 welding management system The step towards more efficient and resource-saving

Intelligent and productivity-boosting networking of man and machine for an automatic flow of data in the production chain: Industry 4.0 is now becoming established in welding production thanks to the new and innovative ewm Xnet 2.0 Welding 4.0 welding management system. Future concepts such as the smart factory and digital transformation become reality with minimal effort. The advantages are obvious: improved networking of products and people increases efficiency and quality, reduces costs and at the same time saves resources. Intelligent monitoring and transparent processes from planning and production through to the final costing of weld seams ensure that you are always kept informed. ewm Xnet 2.0 provides welding companies of all sizes and types with the benefits of Industry 4.0. Bring the future into your company now – get in touch with us.

Network solutions

The compact solution

- Occasional recording, reviewing and analysing of welding data as well as monitoring of networked machines
- Ideal for smaller single-shift operations and small to medium-sized companies with up to approx.
 15 networked machines

The standard solution

- Continuous recording, reviewing and analysing of welding data as well as monitoring of networked machines
- The standard solution for medium-sized and large companies with up to approx. 60 networked machines

welding technology

ewm Xnet 2.0 Your benefits

- Recording of welding data
- Save, review and analyse at a central point
- Online monitoring control and monitor the welding process for any number of welding machines from any number of PC workstations
- Online analysis, evaluation, reporting and documentation of logged welding parameters for each networked welding machine using different documentation and analysis tools
- Option of transferring to all welding machines in the network
- Convenient, easy-to-create graphic display layout showing equipment in the network, based on work facility floor plan; can be enlarged by zooming, navigation window and much more

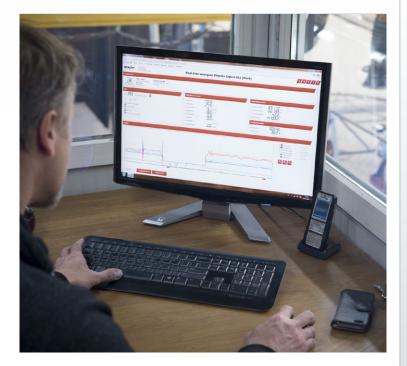
ewm Xnet 2.0 The modules and components

- Basic Set record, manage and transmit consumption values of welding data in real time
- Upgrade 1 WPQX Manager create, manage and assign welding procedure specifications to welders
- Upgrade 2 Component management manage components, create welding sequence plans, assign WPS
- Upgrade 3 Project planning of complex welding tasks
- Xbutton access rights and WPS allocation for the welder via the robust hardware key

160

OPC UA interface

Standardised interfaces such as OPC UA enable users to export data from the EWM system to a standard format so that these data can be integrated into higher-level production management systems.


ewm Xnet 2.0 component management (module 3)

Step 1 – Work preparation in ewm Xnet 2.0

- Create the component to be produced in ewm Xnet 2.0 during work preparation on PC in the office
- Create the component to be produced in the office on PC
- Create drawing file or import from CAD
- Determine seam sequence plan
- Assign WPS
- Print barcode, add the work order or attach directly to the component as a sticker
- Send component data to welding machine via LAN/WiFi
- The data is available offline in the machine e.g. for use on construction sites

Step 2 – Scan the barcode on the component

- Welder scans the barcode on the component using a barcode scanner
- Component data is called up on the control:
 - · Order numbers
 - $\cdot \,$ Component numbers
 - $\cdot \,$ Component group
 - \cdot Series numbers
 - \cdot Batch numbers
 - Welding sequence plan (e.g. seam 1, run 1, seam 1, run 2 etc.)
- · WPS (welding data for every run/seam)
- · Required welding qualification

Step 3 – Xbutton

• Welder identifies themselves for welding approval using the Xbutton on the welding machine

Step 4 –

Call up the beads and seams corresponding to the welding sequence plan using the PM welding torch and graphic display

- Welder begins working in line with the displayed seam sequence
- All welding parameters are set automatically for every individual run/seam by the machine
- After each run/seam, the welder confirms its completion by pressing a button on the PM welding torch with graphic display
- Two-part exit e.g. for tack-welding tasks using a button on the PM welding torch with graphic display
- Display with seams/runs

ewm Xnet 2.0 component management (module 3)

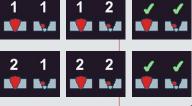
The aim is: To increase added value on weld seams.

From work preparation in the office to welding in production – ewm Xnet 2.0 component management makes a great job of networking. The software supports all parties involved during the entire work process up until the perfectly finished workpiece is produced. It ensures that errors cannot even arise or that they are promptly detected for rectification. In addition to high and reproducible weld seam quality, EWM component management can greatly increase production efficiency. For instance, clear WPS assignment in the production plan eliminates non-productive time spent by welders searching for and setting the respective precisely suitable welding parameters.

- Accelerated, paperless data transfer and communication results in increased productivity
- Comprehensive work preparation including automatic setting of welding parameters for every run/seam results in higher production rates
- Elimination of error sources improves quality the welding sequence plan defines the WPS for every individual run/seam

OPC UA interface

Standardised interfaces such as OPC UA enable users to export data from the EWM system to a standard format so that these data can be integrated into higher-level production management systems.


Optional screen directly at welding site shows welding sequence plan amongst other things

Barcode scanner Scanning the component IDs – Step 2

awm			Stütze Trae	ger 47 compo	nent	
	n Wolfing nachber Bee 31-51 653117 (1 (415) Wolfer Strictber(2)					
And						
				M		
un seguno			Martin San	1.6	1.000	
		1.1	Andre har		the second	
					Bein Trage of A.	2
100					(here here of all	2
A	Concession of the local division of the loca	1.45			(5.45 Teap 2.5.)	2
1000		1. 1. 1			these hope if 6.1	1
			1		Jack Topy C 01	
and the second second			0.1			
I COMPANY						
the second se						
All Property lies	0 0		2.1			
AUDIO	1000					
Contraction of the local division of the loc	A DECK THE REAL PROPERTY AND A DECK THE REAL					
		-		Ma 13.307.1 Referent configural		
Book Real B	ins view live organist	Show WPS				

Welding sequence – Step 4

Xbutton component/welder assignment – Step 3

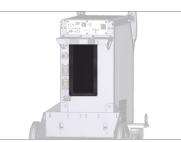
QR code

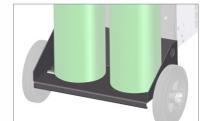
Login from any mobile end device, smartphone or tablet etc. using Expert XQ 2.0

Overview of options

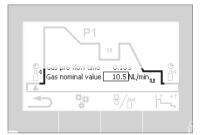
Wire feeder, rotatable

Holder for two wire feeders


Hose package holder


Ram protection

Torch holder


Dust filter for power source and cooling unit

Double cylinder holder

DGC – electronic gas flow control

WHS – wire spool heater

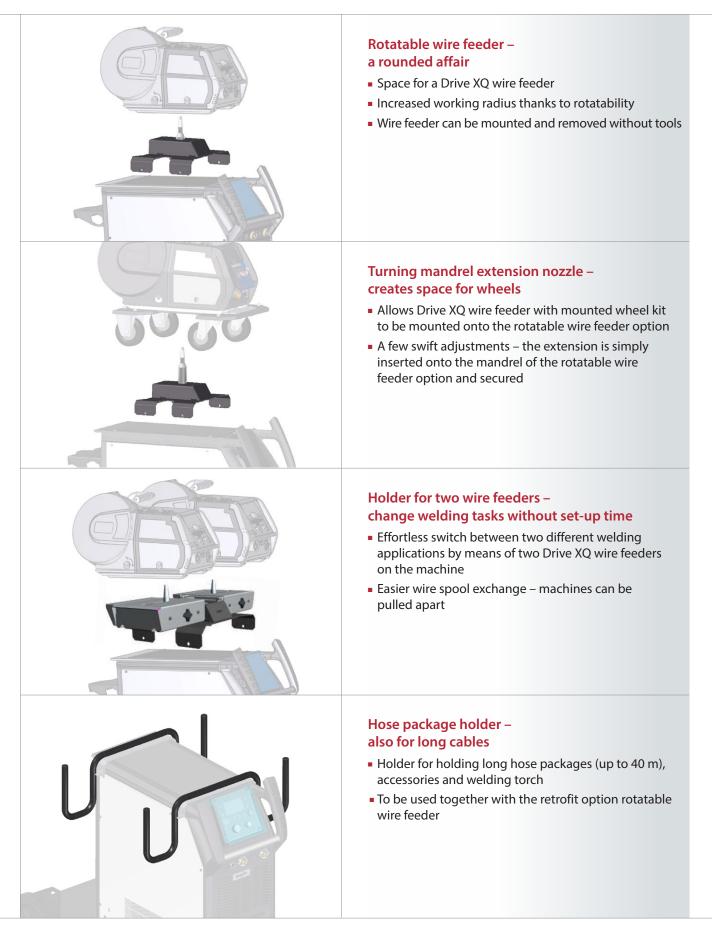
WRS – wire reserve sensor

Torch holder

Rubber feet

Heavy-duty kit (protective plate plus crane suspension)

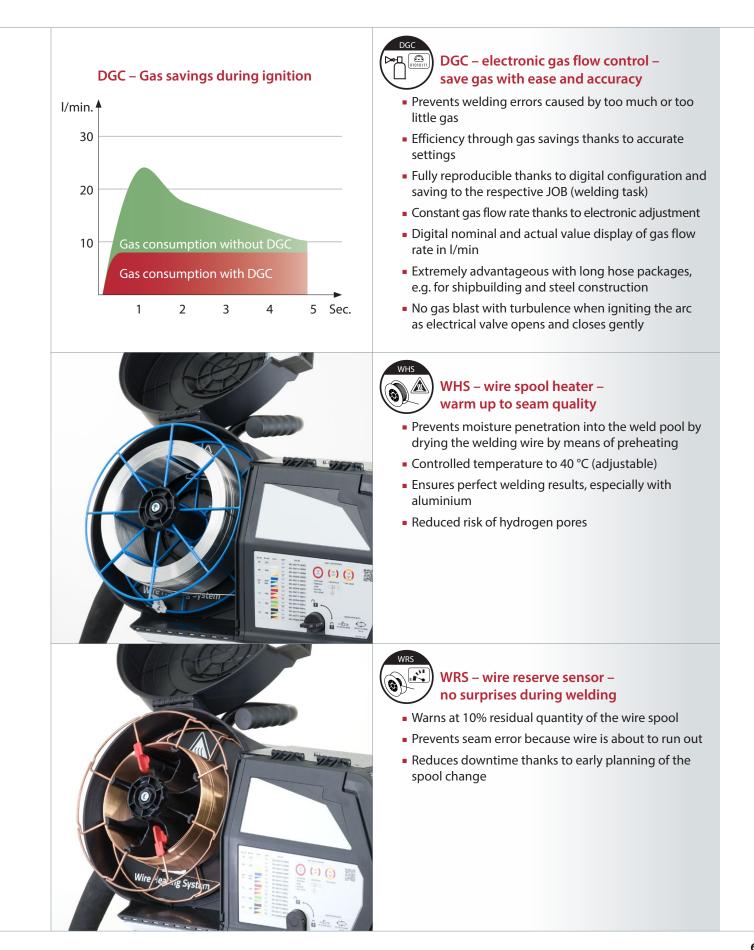
Wheel kit



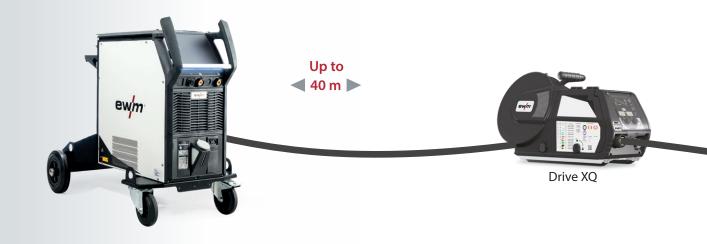
Crane suspension

Connection for drum feed

Meets the wishes of the welder Titan XQ options

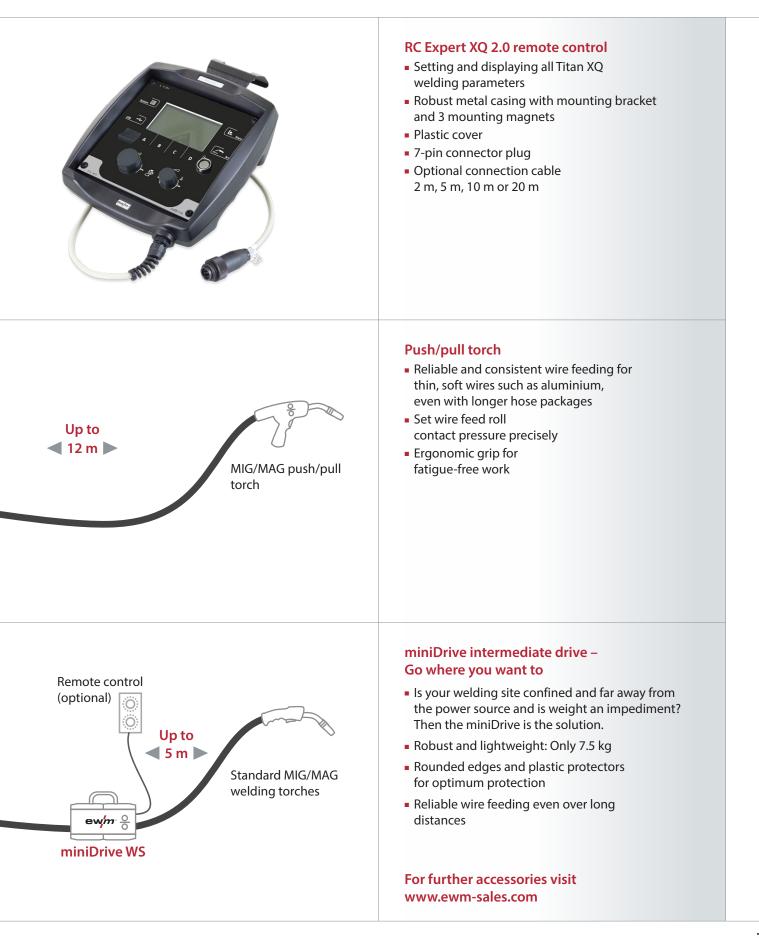


Everything fits – because it's customisable Drive XQ wire feeder options


Titan accessories – User-oriented and useful.

R10 19-pin remote control

- Setting wire feed speed, voltage correction
- Robust metal casing with rubber feet, mounting bracket and mounting magnet, 19-pin connection socket
- Separate connection cable either 5 m, 10 m or 20 m


Push/pull welding torches – System overview

Intermediate drive –System overview

Titan XQ puls - Multi-process MIG/MAG welding machine, Technical data

Technical data	Titan XQ 350 puls	Titan XQ 400 puls	Titan XQ 500 puls	Titan XQ 600 puls		
Setting range for welding current	5 A–350 A	5 A-400 A	5 A–500 A	5 A-600 A		
Setting range for welding voltage	10.2 V-34 V	10.2 V-36 V	10.2 V–40 V	10.2 V-44 V		
Duty cycle welding current at ambient temperature 40 °C						
100%	350 A	370 A	470 A	470 A		
80%	-	400 A	500 A	500 A		
60%	-	-	-	550 A		
40%	-	-	-	600 A		
Mains voltage 50 Hz/60 Hz	3 x 400 V (–25% to +20%) to 3 x 500 V (–25% to +10%)					
Mains fuse (slow-blow)	3 x 20 A	3 x 25 A	3 x 32 A	3 x 32 A		
Efficiency	88%					
cos φ	0.99					
Open circuit voltage at 3 x 400 V mains voltage	82 V					
Max. connected load	15.4 KVA	18.6 KVA	25.8 KVA	34.1 KVA		
Recommended generator rating	20 KVA	25 KVA	35 KVA	45 KVA		
Protection classification	IP 23					
EMC class	А					
Ambient temperature	–25 °C to 40 °C					
Machine cooling	Fan					
Torch cooling	Gas or water					
Coolant water tank	8 L					
Safety identification	S / C E					
Standards	IEC 60974-1, -2, -10					
Dimensions L x H x W	1152 x 976 x 686 mm 45.3 x 38.4 x 27 inch					
Machine weight, gas-cooled	114 kg/251.32 lb					
Machine weight, water-cooled	128 kg/282.19 lb					

* Titan XQ 400/500 puls

Technical data	Drive XQ	
Duty cycle welding current at ambient temperature 40 °C		
100% DC	470 A	
40% DC	600 A	
Wire feed speed	0.5 m/min. to 25 m/min.	
Factory-installed roll equipment	Drive rolls Uni 1.0 to 1.2 mm (for steel wire)	
Drive	4 rolls (37 mm)	
Torch connector	Euro torch connector (ETC)	
Readiness for use in manholes	Complete, 42 cm and larger (oval)	
Wire spool diameter	Standardised wire spools of 200 to 300 mm	
Protection classification	IP 23	
EMC class	A	
Ambient temperature	–25 °C to 40 °C	
Safety signs	(€	
Standards	IEC 60974-1, -5, -10	
Dimensions L x H x W	660 x 380 x 280 mm 26 x 15 x 11 inch	
Weight	13 kg 28.66 lb	

73

٢

ewm

3

Titan XQ puls – Multi-process MIG/MAG welding machine compact with integrated wire feed drive eFeed, Technical data

Technical data	Titan XQ 350 puls	Titan XQ 400 puls			
Setting range for welding current	5 A - 350 A	5 A - 400 A			
Setting range for welding voltage	14.3 V - 31.5 V	14.3 V - 34 V			
Duty cycle welding current at ambient temperature 40 °C					
100%	350 A	320 A			
80%	350 A	350 A			
60%	-	400 A			
40%	-	-			
	3 x 400 V (-25 % to +20 %)				
Mains voltage 50 Hz/60 Hz	3 x 460 V (-25 % to +15 %)				
	3 x 500 V (-25 % to +10 %)				
Mains fuse (slow-blow)	3 x 20 A				
Efficiency	88 %				
cos φ	0,99				
Open circuit voltage at 3 x 400 V mains voltage	82 V				
Max. connected load	17.6 KVA	18.6 KVA			
Recommended generator rating	25 KVA				
Protection classification	IP 23				
EMC class	А				
Ambient temperature	-25 °C to 40 °C				
Machine cooling	Fan				
Torch cooling	Gas or water				
Coolant water tank	8 L				
Safety identification	S / C E				
Standards	IEC 60974-1, -2, -10				
Dimensions L x H x W	1152 x 976 x 686 mm 45.3 x 38.4 x 27 inch				
Machine weight, gas-cooled	117 kg / 257.94 lb				
Machine weight, water-cooled	131 kg / 288.8 lb				
Wire feed speed	0,5 m/min to 25 m/min				
Factory-installed roll equipment	Drive rolls Uni 1.0 to 1.2 mm (for steel wire)				
Drive	4 rolls (37 mm)				
Torch connector	Euro torch connector				
Wire spool diameter	standardised wire spools of 200 to 300 mm				

HEADQUARTERS

EWM AG Dr. Günter-Henle-Straße 8 | 56271 Mündersbach | Germany Tel: +49 2680 181-0 | Fax: -244 www.ewm-group.com | info@ewm-group.com

PRODUCTION, SALES AND SERVICE

EWM AG Dr. Günter-Henle-Straße 8 | 56271 Mündersbach | Germany Tel: +49 2680 181-0 | Fax: -244 www.ewm-group.com | info@ewm-group.com

EWM HIGHTEC WELDING s.r.o. 9. května 718 / 31 | 407 53 Jiříkov | Czech Republic Tel: +420 412 358-551 | Fax: -504 www.ewm-jirikov.cz | info@ewm-jirikov.cz

TECHNOLOGY CENTRE

EWM AG

Forststraße 7-13 | 56271 Mündersbach | Germany Tel: +49 2680 181-0 | Fax: -144 www.ewm-group.com | info@ewm-group.com

EWM HIGH TECHNOLOGY (Kunshan) Ltd. 10 Yuanshan Road, Kunshan | New & Hi-tech Industry Development Zone Kunshan City | Jiangsu | Post code 215300 | People's Republic of China Tel: +86 512 57867-188 | Fax: -182 www.ewm.cn | info@ewm-group.cn

SALES AND SERVICE LOCATIONS GERMANY

EWM AG | Sales and Technology Centre Rathenow Grünauer Fenn 4 | 14712 Rathenow Tel: +49 3385 49402-0 | Fax: -20 www.ewm-rathenow.de | info@ewm-rathenow.de

EWM AG | Sales and Technology Centre Wittstock Ruppiner Straße 6 | 16909 Wittstock Tel: +49 3394 40009-0 | Fax: -20 www.ewm-wittstock.de | info@ewm-wittstock.de

EWM AG | Sales and Technology Centre Göttingen Rudolf-Winkel-Straße 7-9 | 37079 Göttingen Tel: +49 551 3070713-0 | Fax: -20 www.ewm-goettingen.de | info@ewm-goettingen.de

EWM AG | Sales and Technology Centre Ibbenbüren Gildestraße 23 | 49477 Ibbenbüren Tel: +49 5451 93683-0 | Fax: -20 www.ewm-ibbenbueren.de | info@ewm-ibbenbueren.de

EWM AG | Sales and Technology Centre Pulheim Dieselstraße 9b | 50259 Pulheim Tel: +49 2238 46466-0 | Fax: -14 www.ewm-pulheim.de | info@ewm-pulheim.de

EWM AG | Sales and Technology Centre Koblenz August-Horch-Strasse 13a | 56070 Koblenz Tel: +49 261 963754-0 | Fax: -10 www.ewm-koblenz.de | info@ewm-koblenz.de EWM AG | Sales and Technology Centre Siegen Eiserfelder Straße 300 | 57080 Siegen Tel: +49 271 3878103-0 | Fax: -9 www.ewm-siegen.de | info@ewm-siegen.de

EWM AG | Sales and Technology Centre Munich Gadastraße 18a | 85232 Bergkirchen Tel: +49 8142 284584-0 | Fax: -9 www.ewm-muenchen.de | info@ewm-muenchen.de

EWM AG | Sales and Technology Centre Tettnang Karlsdorfer Straße 43 | 88069 Tettnang Tel: +49 7542 97998-0 | Fax: -29 www.ewm-tettnang.de | info@ewm-tettnang.de

EWM AG | Sales and Technology Centre Neu-Ulm Heinkelstraße 8 | 89231 Neu-Ulm Tel: +49 731 7047939-0 | Fax: -15 www.ewm-neu-ulm.de | info@ewm-neu-ulm.de

EWM AG | Sales and Technology Centre Nossen Gewerbestraße 8 | 01683 Nossen Tel: +49 35242 6512-0 | Fax: -20 www.ewm-nossen.de | info@ewm-nossen.de

▲ SALES AND SERVICE LOCATIONS INTERNATIONAL

China

EWM HIGH TECHNOLOGY (Kunshan) Ltd. 10 Yuanshan Road, Kunshan | New & Hi-tech Industry Development Zone Kunshan City | Jiangsu | Post code 215300 | People's Republic of China Tel: +86 512 57867-188 | Fax: -182 www.ewm.cn | info@ewm-group.cn

Austria

EWM HIGHTEC WELDING GmbH Gewerbestraße 7 | 4653 Eberstalzell | Austria Tel: +43 7241 28400-0 | Fax: -20 www.ewm-austria.at | info@ewm-austria.at

Turkey

EWM KAYNAK SİSTEMLERİ TİC. LTD. ŞTİ. Orhangazi Mah. Mimsan San. Sit. 1714. Sok. 22/B blok No:12-14 34538 Esenyurt | Istanbul · Turkey Tel: +90 212 494 32 19 www.ewm.com.tr | turkey@ewm-group.com

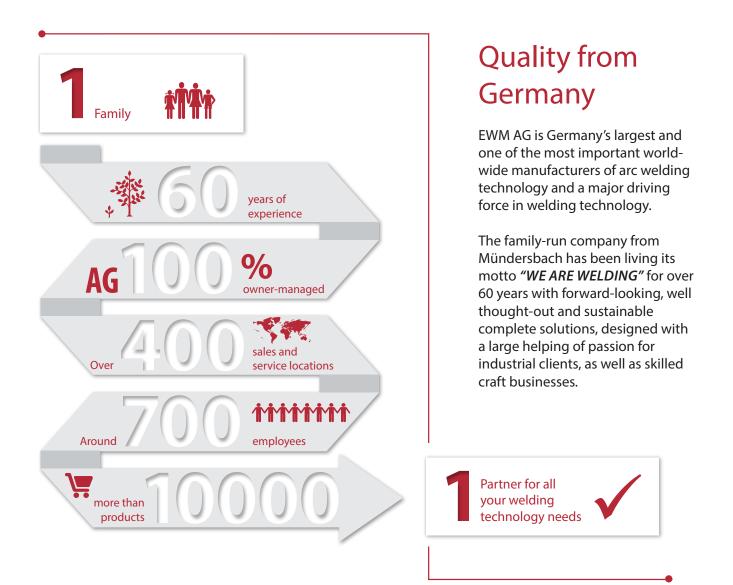
Great Britain

EWM HIGHTEC WELDING UK Ltd. Unit 2B Coopies Way | Coopies Lane Industrial Estate Morpeth | Northumberland | NE61 6JN | Great Britain Tel: +44 1670-505875 | Fax: -514305 www.ewm-morpeth.co.uk | info@ewm-morpeth.co.uk

Czech Republic

EWM HIGHTEC WELDING s.r.o. Sales and Service Centre Benesov u Prahy Tyršova 2106 | 256 01 Benešov u Prahy | Czech Republic Tel: +420 317 729-517 | Fax: -712 www.ewm-benesov.cz | info@ewm-benesov.cz

Poland


EWM AG Oddział w Polsce Gdańska 13A | 70-767 Stettin | Poland Tel: +48 91 433 08 70 www.ewm-stettin.pl | info@ewm-stettin.pl

Would you like to find out more? Call us or send us an email! We're always happy to hear from you. Tel.: +49 02680 181-0 | www.ewm-group.com/contact

Dr. Günter-Henle-Straße 8 D–56271 Mündersbach, Germany Tel: +49 2680 181-0 | Fax: -244 www.ewm-group.com info@ewm-group.com

Come visit us!

Sales | Consultancy | Service